A Strengthening of Erdős-Gallai Theorem and Proof of Woodall's Conjecture

Binlong Li

Joint work with Bo Ning January 6, 2021 • 1. Main result

• 2. Applications

• 3. Kelmans operation

Terminology

- Degree: the degree of a vertex v in G is the number of its neighbors.
- Path: $P=(v_0, e_1, v_1, e_2, \dots, e_k, v_k)$ where $e_i = v_{i-1}v_i$ and $v_i \neq v_j$ for $i \neq j$. An (x, y)-path is one from x to y.
- Cycle: $C = (v_0, e_1, v_1, e_2, \dots, e_k, v_0)$
- Connectivity: *G* is connected if for each two vertices *u*, *v* of *G*, there is a (*u*,*v*)-path. *G* is *k*-connected if *G*-*S* is connected for any vertex set *S* with |S| < k.

Degree, path, cycle

Erdős-Gallai Theorem:

• Erdős-Gallai [1]:

If *G* is 2-connected, $x, y \in V(G)$, and every vertex other than *x*, *y* has degree at least *k*, then *G* has an (*x*, *y*)-path of length at least *k*.

[1] P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337–356.

Generalizations of Erdős-Gallai Theorem:

Erdős-Gallai Theorem has some other generalization, e.g. For Ore's degree sum condition, for Fan-type degree condition, for paths passing through given vertex set, for weighted graphs.

Enomoto [2]: If *G* is 2-connected, $x, z \in V(G)$, and every vertex other than *x*, *z* has degree at least *k*, then Then for any given vertex *y* of *G*, *G* has an (*x*, *y*, *z*)-path of length at least *k*.

[3] H. Enomoto, Long paths and large cycles in finite graphs, J. Graph Theory 8 (1984) 287-301.

Generalizations

Fan [3]: Let *G* be a 2-connected graph and *x* and *y* be two distinct vertices of *G*. If the average degree of the vertices other than *x* and *y* is at least *k*, then *G* contains an (x, y)-path of length at least *k*.

Bondy-Fan [4]: Let *G* be a 2-connected weighted graph and *d* a real number. Let *x* and *z* be two distinct vertices of *G*. If $d^w(v) \ge k$ for all $v \in V(G) \setminus \{x, y\}$, then *G* contains an (x, y)-path of weight at least *k*.

[3] G. Fan, Long cycles and the codiameter of a graph, I. J. Combin. Theory Ser B 49, 151–180 (1990).

[4] J.A. Bondy, G. Fan, Optimal paths and cycles in weighted graphs, Ann. Discrete Math. 41 (1989) 53{69.

Bondy-Jackson Theorem:

Set $n_k(x, y) = |\{z \in V(G) \setminus \{x, y\}: d(z) \ge k\}|.$

• Erdős-Gallai Theorem:

 $n_k(x, y) \ge n - 2 \rightarrow an(x, y)$ -path of length $\ge k$.

- Bondy-Jackson Theorem [5]:
- If *G* is 2-connected with $|V(G)| \ge 4$, *x*, $y \in V(G)$, and every vertex in $V(G) \setminus \{x, y\}$, with possibly one exception, has degree at least *k*, then *G* has an (x, y)-path of length at least *k*.

 $n_k(x, y) \ge n - 3 \rightarrow an(x, y)$ -path of length $\ge k$.

[5] J.A. Bondy, B. Jackson, Long paths between specified vertices of a block, Ann. Discrete Math. 27 (1985), 195–200.

Our Main Theorem

• It is natural to ask what is the best lower bound on $n_k(x, y)$ which still ensures the same conclusion.

Theorem 1 [6]:

• If *G* is 2-connected of order *n*, *x*, $y \in V(G)$, and there are at least $\frac{n-1}{2}$ vertex in $V(G) \setminus \{x,y\}$ has degree at least *k*, then *G* has an (x, y)-path of length at least *k*.

$$n_k(x, y) \ge \frac{n-1}{2} \to \text{an } (x, y) \text{-path of length} \ge k.$$

[6] B. Li, B. Ning, A strengthening of Erdős-Gallai Theorem and proof of Woodall's conjecture, J. Combin. Theory Ser B 146, 76-95 (2021).

Extremal graphs

- Extremal graphs:
- Let $k \ge 5$ be an odd integer, $H = K_{\frac{k-1}{2}} \lor \overline{K_{\frac{k-1}{2}}}$. Let *G* be from *t* disjoint copies of *H*, by adding two new vertices *x* and *y* followed by all edges between *x*, *y* and the $K_{\frac{k-1}{2}}$ subgraph of each copy of *H*.
- There are exactly $\frac{n-2}{2}$ vertices other than $\{x, y\}$ of degree at least k, and the length of a longest (x, y)-path = k 1.

Dirac's Theorem:

- Dirac [8]: Let G be a 2-connected graph on n vertices.
 If every vertex of G has degree at least d, then G contains a cycle of length at least min{2d, n}.
- Extremal Graphs: complete bipartite graph $K_{d-1, n-d+1}$.

[8] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952), 69--81

Generalization of Dirac's theorem:

- P ósa [9]: Let G be a 2-connected graph on n vertices. If the degree sum of every two non-adjacent vertices of G is at least 2d, then G contains a cycle of length at least min{2d, n}.
- Fan [10]: Let G be a 2-connected graph on n vertices. If every pair of vertices x, y with distance 2 satisfies that max{d(x), d(y)} ≥ d, then G contains a cycle of length at min{2d, n}.

[9] L. Pósa, On the circuits of finite graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963) 355–361.

[10] G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory Ser. B 37 (1984) 221–227.

Generalization of Dirac's theorem:

- Erdős, Gallai [1]: Let *G* be a graph on *n* vertices and *m* edges. If $m \ge n$, then *G* contains a cycle of length at least $\frac{2m}{n-1}$.
- Locke [11]: Let *G* be a 2-connected graph on *n* vertices. If every vertex of *G* has degree at least *k*, then for any two vertex *x*, *y* of *G*, *G* contains a cycle of length at least min{2*k*, *n*} passing through *x*, *y*.

[1] P. Erdős, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337–356.
[11] S.C. Locke, A generalization of Dirac's theorem, Combinatorics 5 (2) (1985) 149-159.

Woodall's Conjecture

• Woodall's Conjecture [12]:

Let *G* be a 2-connected graph on *n* vertices. If there are at least $\frac{n}{2} + k$ vertices of degree at least *k*, then $c(G) \ge 2k$.

[12] D. R. Woodall, Maximal circuits of graphs II, Studia Sci. Math. Hungar. 10 (1975), 103–109.

Woodall's Conjecture

- Häggkvist-Jackson [13]: $n \le 3k-2$ (2k vertices of degree $\ge k$).
- Li-Li [14]: $n \le 4k 6$.
- Häggkvist-Li [15]: 3-connected, $k \ge 25$.
- Li [15]: Under the condition, $c(G) \ge 2k 13$.
- Li: $(k \ge 683)$.

[13] R. Häggkvist, B. Jackson, A note on maximal cycles in 2-connected graphs, Ann. Discrete Math. 27 (1985), 205–208.
[14] D. Li, H. Li, On longest cycles in graphs, Rapport de recherche no 1160, LRI, URA 410 du CNRS, Bat. 490, Univ de Paris sud, 91405-Orsay, France.
[15] H. Li, On a conjecture of Woodall, J. Combin. Theory Ser. B 86 (1) (2002)

[15] H. Li, On a conjecture of Woodall, J. Combin. Theory Ser. B 86 (1) (2002) 172–185.

Woodall's conjecture

• Theorem 2 [6]:

Let *G* be a 2-connected graph on *n* vertices. If there are at least $\frac{n}{2} + k$ vertices of degree at least *k*, then $c(G) \ge 2k$.

[6] B. Li, B. Ning, A strengthening of Erdős-Gallai Theorem and proof of Woodall's conjecture, J. Combin. Theory Ser B 146, 76-95 (2021).

• 2. Applications

Fan lemma

Let *G* be a graph, *C* a cycle of *G*, and *H* a component of G-C. An (*H*,*C*)-fan consists of paths $P_1, P_2, ..., P_t, t \ge 2$, such that: (1) all P_i have the same origin $v \in V(H)$ and pairwise different termini $u_i \in V(C)$; (2) all internal vertices of P_i are in *H* and P_i 's are pairwise internally disjoint.

Theorem (Fujisawa, Yoshimoto, Zhang[16]). Let *G* be a 2-connected graph, *C* a cycle of *G*, and *H* a component of G - C. If each vertex in *H* has degree at least *k* in *G*, then there is an (*H*, *C*)-fan with at least *k* edges.

[16] J. Fujisawa, K. Yoshimoto, S. Zhang, Heavy cycles passing through some specified vertices in weighted graphs, J. Graph Theory 49 (2005) (2), 93–103.

Woodall-type fan lemma

Theorem 3, Woodall-type Fan Lemma [4]:

Let *G* be a 2-connected graph, *C* a cycle of *G*, and *H* a component of G-C. If there are at least $\frac{|H|+1}{2}$ vertices in *V*(*H*) of degree at least *k* in *G*, then there is an (*H*,*C*)-fan with at least *k* edges.

Lemma. Let *G* be a 2-connected non-hamiltonian graph, *C* a longest cycle and *H* a component of G - C. If there is an (*H*,*C*)-fan with at least *k* edges, then $|C| \ge 2k$.

Proof of Woodall's conjecture

n/2 + k vertices of degree $\geq k \rightarrow c(G) \geq 2k$

Let *C* be a longest cycle of *G*. By condition $n \ge 2k$. If *G* is Hamiltonian then $|C| \ge 2k$. So let H_i , i = 1, ..., t, be the components of G - C.

If H_i contains more than half vertices of degree $\ge k$, then an (H_i, C) -fan of edge number $\ge k$, then $|C| \ge 2k$.

So the number of vertices of degree $\geq k$ is at most

$$|C| + \sum_{i=1}^{t} \frac{|H_i|}{2} = \frac{n+|C|}{2}.$$

$$n+|C| > \frac{n}{2} + \log |A| + C| > 21.$$

We have $\frac{n+|C|}{2} \ge \frac{n}{2} + k$ and $|C| \ge 2k$.

Bermond's conjecture

Bermond's Conjecture [17]. Let *G* be a 2-connected graph with vertex set $V = \{x_i : 1 \le i \le n\}$ and $c \le n$. If for any pair of vertices (x_i, x_j) , i < j, one of the following holds:

(i) i + j < c; (ii) $x_i x_j \in E(G)$; (iii) $d(x_i) > i$; (iv) $d(x_j) \ge j$; (v) $d(x_i) + d(x_j) \ge c$,

then $c(G) \ge c$.

Theorem 4 [6]. Bermond's conjecture is true for $n \ge 3c - 1$.

[17] J.C. Bermond, On Hamiltonian walks, Congr. Numer. 15 (1976) 41–51.

Bazgan-Li-Woźniak's theorem

Lobel, Komlos and Sós' conjecture: Suppose that *G* is an *n*-vertex graph with at least n/2 vertices of degree at least *k*. Then G contains each tree of order k+1.

• The following is a special case of Loebl-Komlós-Sós' conjecture

Theorem 7 (Bazgan, Li, Woźniak [18])

Let G be a graph on n vertices. If there are at least $\frac{n}{2}$ vertices of degree at least k, then G contains a path of length at least k.

[18] C. Bazgan, H. Li, M. Woźniak, On the Loebl-Komlós-Sós conjecture, J. Graph Theory 34 (2000), no. 4, 269–276.

Some theorems on cycles

- **Theorem** (Dirac [8]). Let *G* be a 2-connected graph on *n* vertices. If the degree of every vertex is at least *k*, then $c(G) \ge \min\{n, 2k\}$.
- Theorem (Erdős, Gallai [1], Bondy [19]). Let *G* be a 2-connected graph on *n* vertices. If the degree of every vertex other than one is at least *k*, then *c*(*G*) ≥ min{*n*, 2*k*}.

[8] G.A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69–81.

[19] J.A. Bondy, Large cycles in graphs, Discrete Math. 1 (1971/72), no. 2, 121–132.

Some theorems on cycles

- Theorem 8 [6]. Let *G* be a 2-connected graph on $n \ge 2ks + 3$ vertices and $x, y \in V(G)$. If $\max\{d(v): v \in S\} \ge k$ for any independent set $S \subset V(G) \setminus \{x,y\}$ with |S|=s+1, then *G* has an (x,y)-path of length at least *k*.
- **Theorem 9 [6].** Let *G* be a 2-connected graph on $n \ge 2k(s+1)$ vertices. If $\max\{d(v): v \in S\} \ge k$ for any independent set $S \subset V(G)$ with |S|=s+1, then $c(G)\ge 2k$.

Bondy's conjecture

• Theorem (Fournier, Fraisse [20]). Let G be an sconnected graph on n vertices where $s \ge 2$. If the degree sum of any independent set of size s + 1 is at least m, then $c(G) \ge \min\{\frac{2m}{s+1}, n\}$.

[20] I. Fournier, P. Fraisse, On a conjecture of Bondy, J. Combin. Theory Ser. B 39 (1985), no. 1, 17–26.

Häggkvist-Jackson's conjecture

Häggkvist-Jackson's conjecture [21]

Let G be a 2-connected graph on n vertices. If G contains at least $\max\left\{2k-1,\frac{n+k}{2}+1\right\}$ vertices of degree at least k, then G has a cycle of length at least $\min\{n, 2k\}$.

[21] R. Häggkvist, B. Jackson, A note on maximal cycles in 2connected graphs, Ann. Discrete Math. 27 (1985), 205–208.

Häggkvist-Jackson's conjecture

• Let
$$G_1 = K_2 \vee (K_{2k-4} + \overline{K_t})$$
.

- Let $H_1 = K_{\frac{k-1}{2}} \bigvee \overline{K_{\frac{k-1}{2}}}$, $H_2 = K_{k+1}$ ($k \ge 3$ is odd). Let G_2 be the graph obtained from one copy of H_2 and t disjoint copies of H_1 by joining each vertex in the $K_{\frac{k-1}{2}}$ subgraph of H_1 to two fixed vertices of H_2 .
- One can see G_1 has 2k-2 vertices of degree at least k, G_2 has $\frac{n+k+1}{2}$ vertices of degree at least k, and $c(G_1) = c(G_2) = 2k - 1.$

Li's conjecture

Li [21] conjectured that for any 2-connected graph G of order n, there is a cycle of length at least 2k if the number of vertices of degree at least k is at least ^{n+k}/₂. The constructions G₁ and G₂ mentioned above disprove Li's conjecture.

[21] H. Li, Generalizations of Dirac's theorem in Hamiltonian graph theory–a survey, Discrete Math. 313 (2013), no. 19, 2034–2053.

A conjecture

- We suggest the following conjecture, which is a generalization of Theorem 1.
- Conjecture 1 [6]. Let *G* be a 2-connected graph on *n* vertices and $x,y \in V(G)$. Let $0 < \alpha \le 1/2$. If $V(G) \setminus \{x,y\}$ contains more than $\alpha(n-2)$ vertices of degree at least *k*, then *G* contains an (x,y)-path of length at least $2\alpha k$.

A conjecture

- When α is a rational number, we choose k such that α(k-1) is an integer. Let H = K_{α(k-1)} VK_{(1-α)(k-1)}. Let G be obtained from t copies of H, by adding two new vertices {x, y} and all possible edges between {x,y} and the K_{α(k-1)} subgraph of each H. The number of vertices of degree at least k in G is α(|G|-2) and a longest (x,y)-path is of length 2α(k-1).
- This example shows that Conjecture 1 is sharp for infinite values of integers *n* and *k*.

• 3. Kelmans operation

Kelmans operation

• Let G be a graph and $u,v \in V(G)$. A new graph $G':=G[u \rightarrow v]$ is a **Kelmans graph** [22] of G (from u to v), if V(G')=V(G) and E(G') =

 $(E(G) \setminus \{uw: w \in N[u] \setminus N[v]\}) \cup \{vw: w \in N[u] \setminus N[v]\}.$

[22] A.K. Kelmans, On graphs with randomly deleted edges, Acta Math. Acad. Sci. Hungar. 37 (1981)77–88.

Order of degree sequences

• Assume $\tau(G) = (d_1, d_2, ..., d_n)$, $\tau(G') = (d'_1, d'_2, ..., d'_n)$ are non-increasing degree sequences of *G* and *G'*, respectively. If there exists an integer *j* such that $d_i = d'_i$ for $1 \le i \le j-1$ and $d_j = d'_j$, then we say that $\tau(G)$ is larger than $\tau(G')$ and denote it by $\tau(G) > \tau(G')$.

A lemma on Kelmans operation

- Lemma [6]. Let G be a graph, x, y, u be distinct vertices of G, and $v \in N(u)$ (possibly $v \in \{x, y\}$). Let $G'=G[u \rightarrow v]$.
 - (i) If neither $N[u] \subseteq N[v]$ nor $N[v] \subseteq N[u]$, then $\tau(G') > \tau(G)$.
 - (ii) If G' has an (x, y)-path of length at least k, then so does G.

Thanks!